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Overview

1 Background and Motivation

2 Low dimensional geometric object: spherelets
New Dictionary
Main Theorem
Spherical principal component analysis (SPCA)
Convergence Analysis
Spherelets Algorithm & Examples

3 Bayesian approach: mixture of spherelets
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Background

(Of course) very common to collect high-dimensional data

Let p = ambient dimension of data & n = sample size
If p� n, we need to exploit lower-dimensional structure in the data
Common to suppose data do not live everywhere in p-dimensional
space
May be concentrated near a subspaceM having dimension d
with d � p
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Motivation

Suppose Xi = (Xi1, . . . ,Xip)T ∈M ⊂ Rp, Xi are i.i.d. samples from
density ρ, where supp(ρ) =M, dim(M) = d � p

M = unknown support having intrinsic dimension d
Hence, we have a doubly nasty problem
We don’t know the density of the data (density estimation in
high-dimensions)
We also don’t know the support of this density (subspace learning)
Many relevant algorithms
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Common Approach

First estimate coordinates on a low-dimensional subspace Xi → ηi

Often PCA is applied to estimate ηi

Then in a second stage one can estimate the density of ηi

The first stage is commonly referred to as manifold learning
Assume that the subspace is either a smooth manifold or a
collection of such manifolds
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Dictionaries for Subspaces

Machine learning algorithms usually require some sort of
dictionary to use in approximating the subspaceM

IfM is linear, then methods such as PCA, SVD, ICA & factor
analysis can be used
Of course linearM is much too restrictive in many applications
M may have substantial curvature, potentially even with the
curvature varying overM
How to approximate arbitrary non-linear subspaces?
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Locally Linear Approaches

It is extremely common in this setting to use locally linear
approaches

IfM is a Riemannian manifold, can be motivated by thinking of a
collection of tangent plane approximations
Locally linear embeddings (LLE), Diffusion Map, EigenMap, tSNE,
etc
Local PCA, including Multiscale analysis of plane arrangements
and Geometric Multi-Resolution Analysis (GMRA)
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Pros and Cons of Current Approaches

Pros
Use simple linear pieces so conceptually easy
Can potentially have good computational efficiency

Cons
Tend to find too many pieces when the manifold has large
curvature

Didong Li Efficient manifold and subspace approximations with spherelets 8 / 34



Pros and Cons of Current Approaches

Pros
Use simple linear pieces so conceptually easy
Can potentially have good computational efficiency

Cons
Tend to find too many pieces when the manifold has large
curvature

Didong Li Efficient manifold and subspace approximations with spherelets 8 / 34



Pros and Cons of Current Approaches

Pros
Use simple linear pieces so conceptually easy
Can potentially have good computational efficiency

Cons
Tend to find too many pieces when the manifold has large
curvature

Didong Li Efficient manifold and subspace approximations with spherelets 8 / 34



New dictionary

First order −→ second order: x>Hx + f>x + c = 0.

Number of unknown parameters = p(p+1)
2 + p + 1 = O(p2).

Trades one problem (too many pieces) for another (too many
parameters)
An alternative is osculating circles/spheres
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Using spheres to locally approximate subspaces
Why spheres?

Compactness
Hyperplane=sphere with infinite radius (compactification)
Projection to sphere is easy to compute
Cell complex structure: Sd = Sd−1 ∪ ed

1 ∪ ed
2
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Spherelets - A dictionary for subspaces

We propose to use pieces of spheres or spherelets as a dictionary

Often *many* fewer spheres than planes to obtain the same
approximation error
Each sphere has few parameters & they are simple geometric
objects that are easy to fit
Before considering algorithms for fitting spherelets, we studied
their approximation properties
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Notation and concepts

M is a compact C3, d-dimensional orientable manifold embedded
in Rp

Trivial to extend our results to a collection of such manifolds
We want to bound # pieces needed to obtain approximation error ε
NH(ε,M) = minimal # hyperplanes, NS(ε,M) = minimal # spheres
K=max curvature, T=maximum rate of change in curvature,
V = Vol(M).
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Main Theorem

Theorem
1 The bound on the hyperplane covering number is

NH(ε,M) ≤ V
(2ε

K

)− d
2

2 Let Fε := {p ∈M : |k1(p)− kd(p)| ≤ ( 2ε
K ) 1

2 }, where k1(p) and kd(p)
are the max & min principal curvature ofM at p. Let

Mε :=
⋃

p∈Fε

B
(

p,
( 6ε

3 + T
) 1

3
)

and Vε := Vol(Mε), then

NS(ε,M) ≤ Vε
( 6ε

3 + T

)− d
3

+ (V − Vε)
(2ε

K

)− d
2
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Implications of the Theorem
Since ε ≈ 0, ε−d/2 is very large showing the curse of
dimensionality

Even if an oracle could perfectly choose the pieces to best
approximateM, we need lots of pieces as d increases for small ε
Spherelets can decrease the impact of the curse to ε−d/3 IF
There aren’t too many locations p ∈M having big changes in
principal curvature
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Spherical principal component analysis (SPCA)

Definition
X ∈ Rn×p,

d � p, Yi = X̄ + V̂ V̂>(Xi − X̄ ), V̂ = (v1, · · · , vd+1),
vi = eveci{(X − 1X̄>)>(X − 1X̄>)}, where eveci(S) is the ith eigenvector
of S in decreasing order. Zi = ĉ + r̂

‖Yi−ĉ‖ (Yi − ĉ) is the d-dimensional
spherical component of X , where r̂ = 1

n
∑n

i=1 ‖Yi − ĉ‖,

ĉ = −1
2

( n∑
i=1

(
Ȳ−Yi)(Ȳ−Yi

)>)−1 n∑
i=1

(
‖Y>i Yi‖−

1
n

n∑
j=1
‖Y>j Yj‖

)(
Ȳ−Yi

)
.

d-PSPCA = the projection of X to the “best” d dimensional sphere
centered at c with radius r
Let (V∗, c∗, r∗) denote the values of (V̂ , ĉ, r̂) obtained plugging in
exact moments of the population distribution in place of sample
values.
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Ȳ−Yi)(Ȳ−Yi
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Ȳ−Yi)(Ȳ−Yi
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d-PSPCA = the projection of X to the “best” d dimensional sphere
centered at c with radius r

Let (V∗, c∗, r∗) denote the values of (V̂ , ĉ, r̂) obtained plugging in
exact moments of the population distribution in place of sample
values.
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Loss function

SPCA minimizes the loss function
n∑

i=1
(X>i Xi + f>Xi + b)2

where f̂ = −2ĉ and b̂ = ‖ĉ‖2 − r̂2.

PCA minimizes the loss function
n∑

i=1
(f>Xi + b)2,

where f̂ is the unit normal vector of the best d-dimensional affine
subspace, or the eigenvector of covariance matrix corresponding
to the smallest eigenvalue.
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Spherical projection

P̂rojn(x) := ĉ + r̂
‖V̂ V̂>(x−ĉ)‖

V̂ V̂>(x − ĉ) is the spherical projection to
SV̂ (ĉ, r̂), where n is the sample size

Proj∗(x) := c∗ + r∗
‖V∗V∗>(x−c∗)‖V

∗V∗>(x − c∗) is the population
version
P̂rojn converges to Proj∗ in probability under some mild conditions
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Convergence of empirical SPCA

(A) Distributional Assumption: X = VΛ1/2Z where Z = ((zi,j)) is a n× p
matrix whose elements zi,j ’s are i.i.d. non-degenerate random
variables with E(zi,j) = 0, E(z2

i,j) = 1 and E(z6
i,j) <∞.

(B) Spike Population Model: Λ = diag{λ1, · · · , λp}, then ∃m > d s.t.
λ1 ≥ λ2 ≥ . . . ≥ λm > λm+1 = . . . = λp = 1, .

Theorem
Under the assumptions A and B, for any x, we have

P̂rojn(x) p−→ Proj∗(x).
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Error bound

Theorem

There exists θ > 0 that depends only on (M, ρ) such that

EρU‖x − Proj∗(x)‖2 ≤ θα4,

where α = diam(U) = sup
x,y∈U

d(x, y) is the diameter of U.

Corollary
Under assumptions A, B, there exists θ ∈ R that depends only on (M, ρ)
such that for any x, for any ε > 0,

lim
n→∞

P(‖x − P̂rojn(x)‖2 > θα4 + ε) = 0.

In some multi-scale methods, α = 2−j where j is the partition level.
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Analyzing data using spherelets

The main theorem suggests that we should see big gains in
practical performance

Spherelets provide a general dictionary for manifolds and
subspaces–Local SPCA vs Local PCA
For any (locally) linear algorithm, we can replace PCA by spherical
PCA and get the spherical version–denoising & visualization
Given new (test) data, we don’t need to retrain the
spherelets–allow us to use CV to choose tuning parameters
We also develop a mixtures of spherelets model for probabilistic
inference (Nonparametric Bayes)
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Local (S)PCA

Construct a partition {Ck}Kk=1 where ⋃K
k=1 Ck = Rp

Perform local (S)PCA on each Ck

M could be approximated by its projection onto the family of linear
subspaces(spherelets) obtained by local (S)PCA
Many partitioning algorithms: cover tree, METIS, kNN, etc
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Dragon
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Some real data apps (‘datasets’ package in R) [d = 1]

a. Iris data: measurements of sepal length & width + petal length &
width, for 50 flowers from each of 3 species of iris.

b. EuStockMarkets data: daily closing prices of major European
stock indices: Germany DAX (Ibis), Switzerland SMI, France CAC &
UK FTSE.
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Some (more) real data apps [d = 2]

c. Seals data: vector field of seal movement from Brillinger et al.,
2004 (‘ggplot2’ R package).

d. Banknote authentication data: images from genuine & forged
banknote-like specimens (UCL ML repository)
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Yet another app (‘datasets’ R package) [d = 1]

e. Quakes data: locations of 1000 seismic events of MB > 4.0
occurring in a cube near Fiji since 1964.

All datasets are standardized. In each case, we randomly select
1/2 samples as training & remaining as test.
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Visualization

Iris data, d=1: measurements of sepal length & width + petal
length & width, for 50 flowers from each of 3 species of iris.
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Denoising
Manifold Blurring Mean Shift (MBMS) vs SMBMS
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Nonparametric subspace & density estimation

We can also take a likelihood-based approach

Mixture of spherelets model
ith data point is generated from the hth sphere with probability πh

Data in component h drawn from location-scale mixture of von
Mises-Fisher distributions on sphere h
Gaussian noise added to allow data to not fall exactly on a
particular sphere

Didong Li Efficient manifold and subspace approximations with spherelets 28 / 34



Nonparametric subspace & density estimation

We can also take a likelihood-based approach
Mixture of spherelets model

ith data point is generated from the hth sphere with probability πh

Data in component h drawn from location-scale mixture of von
Mises-Fisher distributions on sphere h
Gaussian noise added to allow data to not fall exactly on a
particular sphere

Didong Li Efficient manifold and subspace approximations with spherelets 28 / 34



Nonparametric subspace & density estimation

We can also take a likelihood-based approach
Mixture of spherelets model
ith data point is generated from the hth sphere with probability πh

Data in component h drawn from location-scale mixture of von
Mises-Fisher distributions on sphere h
Gaussian noise added to allow data to not fall exactly on a
particular sphere

Didong Li Efficient manifold and subspace approximations with spherelets 28 / 34



Nonparametric subspace & density estimation

We can also take a likelihood-based approach
Mixture of spherelets model
ith data point is generated from the hth sphere with probability πh

Data in component h drawn from location-scale mixture of von
Mises-Fisher distributions on sphere h

Gaussian noise added to allow data to not fall exactly on a
particular sphere

Didong Li Efficient manifold and subspace approximations with spherelets 28 / 34



Nonparametric subspace & density estimation

We can also take a likelihood-based approach
Mixture of spherelets model
ith data point is generated from the hth sphere with probability πh

Data in component h drawn from location-scale mixture of von
Mises-Fisher distributions on sphere h
Gaussian noise added to allow data to not fall exactly on a
particular sphere

Didong Li Efficient manifold and subspace approximations with spherelets 28 / 34



Mixture of spherelets : Model

Let {xi}ni=1 be the observations with

xi = yi + εi ,

where yi is exactly on some sphere & εi ∼ N(0, σ2Ip).

f (yi |Π,Θ) =
K∑

k=1
πk f (yi |Θk), with Π = (π1, · · · , πK ),

f (y|Θk) = density on kth sphere, Θk = (Λk ,Vk ,ck , rk ,Mk ,Tk).

f
( VkV ′k(yi − ck)

rk

∣∣∣∣Mk ,Tk ,Λk

)
=

L∑
lk =1

λlk fvMF

( yi − ck
rk

∣∣∣∣µlk , τlk

)
,

where fvMF (·|µ, τ ) = Von-Mises Fisher density, and
Λk = (λl1 , λl2 , · · · , λlk ).

Didong Li Efficient manifold and subspace approximations with spherelets 29 / 34



Mixture of spherelets : Model

Let {xi}ni=1 be the observations with

xi = yi + εi ,

where yi is exactly on some sphere & εi ∼ N(0, σ2Ip).

f (yi |Π,Θ) =
K∑

k=1
πk f (yi |Θk), with Π = (π1, · · · , πK ),

f (y|Θk) = density on kth sphere, Θk = (Λk ,Vk ,ck , rk ,Mk ,Tk).

f
( VkV ′k(yi − ck)

rk

∣∣∣∣Mk ,Tk ,Λk

)
=

L∑
lk =1

λlk fvMF

( yi − ck
rk

∣∣∣∣µlk , τlk

)
,

where fvMF (·|µ, τ ) = Von-Mises Fisher density, and
Λk = (λl1 , λl2 , · · · , λlk ).

Didong Li Efficient manifold and subspace approximations with spherelets 29 / 34



Mixture of spherelets : Model

Let {xi}ni=1 be the observations with

xi = yi + εi ,

where yi is exactly on some sphere & εi ∼ N(0, σ2Ip).

f (yi |Π,Θ) =
K∑

k=1
πk f (yi |Θk), with Π = (π1, · · · , πK ),

f (y|Θk) = density on kth sphere, Θk = (Λk ,Vk ,ck , rk ,Mk ,Tk).

f
( VkV ′k(yi − ck)

rk

∣∣∣∣Mk ,Tk ,Λk

)
=

L∑
lk =1

λlk fvMF

( yi − ck
rk

∣∣∣∣µlk , τlk

)
,

where fvMF (·|µ, τ ) = Von-Mises Fisher density, and
Λk = (λl1 , λl2 , · · · , λlk ).

Didong Li Efficient manifold and subspace approximations with spherelets 29 / 34



Mixture of spherelets : Priors

The priors of different parameters are as follows:
a. Π = (π1, π2, · · · , πK ) ∼ Dirichlet(1/K , . . . ,1/K ).

b. Λk = (λl1 , · · · , λlk ) ∼ Dirichlet(1/L, . . . ,1/L).

c. ck ∼ N
(
ĉk , σ

2
1Ip
)
, rk ∼ Inverse–Gamma(ar ,br ), where ar ,br and

σ1 are hyper-parameters, ĉk is the empirical estimate of ck .
d. µlk ∼ vMF((1/

√
d, . . . ,1/

√
d), κ), and τlk ∼ Gamma(aτ ,bτ ).

e. σ2 ∼ Inverse-Gamma(aσ,bσ).
f. The matrix Vk is the empirical Bayes estimate.
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Computation - Mixture of spherelets model

For a finite mixture model, an EM algorithm or MCMC algorithm
can be easily implement for computation

We initially take a fully Bayesian approach, using default priors &
running MCMC
A simple data augmentation Gibbs sampler can be defined -
starting the chain at the output of our initial algorithm
Over-fitted mixtures (Rousseau & Mengerson 2011) allow
uncertainty in # of mixture components/clusters
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Discussion

Based on our theory & initial results, spherelets provide a
promising alternative to linear approach (PCA)

There are a lot of potential applications including manifold
learning, denoising, visualization, manifold regression, clustering,
etc
In the Bayesian case, we would like to estimate bothM & f (y) -
obtaining minimax optimal posterior concentration rates
Using the model-based approach straightforward to extend the
approach to broad & complex data structures
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